

REPORT TO COSPAR On the occasion of its August 2020 General Assembly, Sydney, Australia TENTATIVE OUTLINE

EACH CHAPTER TO BE A BOOK CHAPTER + A STAND-ALONE PEER-REVIEWED ARTICLE Book edited by SOC committee + Pascal Willis, Editor-in-chief of Adv. Space Res.

CHAPTER 1: Summary - Horizon 2061 rationale, objectives and main results

CHAPTER 2: Key Science Questions

CHAPTER 3: Representative space missions

CHAPTER 4: Enabling technologies

CHAPTER 5: Supporting infrastructures

CHAPTER 6: Implementation opportunities and the role of cooperation between

actors in the future of Planetary Exploration

REPORT TO EPSC-DPS Geneva, Sept. 19th and 20th, 2019

PLANETARY EXPLORATION, HORIZON 2061 session MIT4

Friday, 20 September 2019 | Moon (Room 15) Chairperson: Jeremie Lasue

An introduction to the Planetary Exploration, Horizon 2061 foresight exercise and to the preliminary conclusions of its synthesis workshop (Toulouse, Sept. 11-13, 2019)

Michel Blanc and the Scientific Organization Committee of H2061 Toulouse 2019

08:40-08:50

Report from Horizon 2061 Synthesis Workshop Pillar 1: From Science questions to representative space missions

Véronique Dehant, Steve Mackwell, and Michel Blanc

08:50-09:00 |

Report from Horizon 2061 Synthesis Workshop Pillar 2: From representative missions to technology requirements

Ralph McNutt, Pierre Bousquet, Anil Bhardvadj, **Manuel Grande**, Oleg Korablev, Franck Montmessin, Olivier Hainaut, and Michel Blanc

09:00-09:10 |

Report from Horizon 2061 Synthesis Workshop Pillar 3: Enabling technologies

Wing Ip, Advenit Makava, Patricia Beauchamp, Brook Lakew, Jean Broquet, Linli Guo, Jorge Alves, and **Michel Blanc**

09:10-09:20 |

Horizon 2061: Infrastructures, services & collaborative programs

Bernard Foing and the Horizon 2061 team contributors

On the Feasibility for Mining the Hydrogen Peroxide (H2O2) of Mars for Monopropellant Rocket Fuel

Francisco J Arias and Salvador De Las Heras

09:30-09:40 |

A New Mechanism to Make Mars Habitable

Edwin Kite, Ramses Ramirez, and Martin Turbet

09:40-10:00

Panel and discussion with the community

PLANETARY EXPLORATION, HORIZON 2061 session MIT4

Poster contributions (Thursday evening)

Attendance time: Thursday, 19 September 2019, 17:15–18:45 | Level 1

L1.33 |

EPSC-DPS2019-292

Surface Dating of Airless Bodies by Remote Sensing Luminescence

Rita Schulz

L1.34 |

EPSC-DPS2019-341

Solar and Hybrid Electric Propulsion Missions to the Outer Solar System

Edgar Bering, Matthew Giambusso, Alex Parker, Mark Carter, Jared Squire, and Franklin Chang Diaz

L1.35 |

EPSC-DPS2019-730

Smallsat Innovations for Planetary Science Missions

Rebecca Schindhelm, Karen McConnell, David Osterman, Shane Roark, Reuben Rohrschneider, Jeffrey Van Cleve, Michael Veto, and Jonathan Weinberg

L1.36 |

EPSC-DPS2019-2001

Report from Horizon 2061 Synthesis Workshop Session 3: foresight visions and programs from agencies and industry

Doris Daou, Francis Rocard, Kyeong Ja Kim, Hélène Boithias, Maria Antonietta Perino, and Michel Blanc

Special Horizon 2061 session 17th AOGS Annual Meeting 2020 South Korea

H2061 METHOD (1)

DESIGN AN

« INTEGRATED SPACE SCIENCE MISSION TO PLANETARY SYSTEMS » BY BUILDING ITS TRACEABILITY MATRIX, WE WILL BUILD OUR « FOUR PILLARS »

OVERARCHING GOALS

MAJOR SCIENTIFIC QUESTIONS

PILLAR 1

KEY SCIENCE QUESTIONS

KEY MEASUREMENT OBJECTIVES

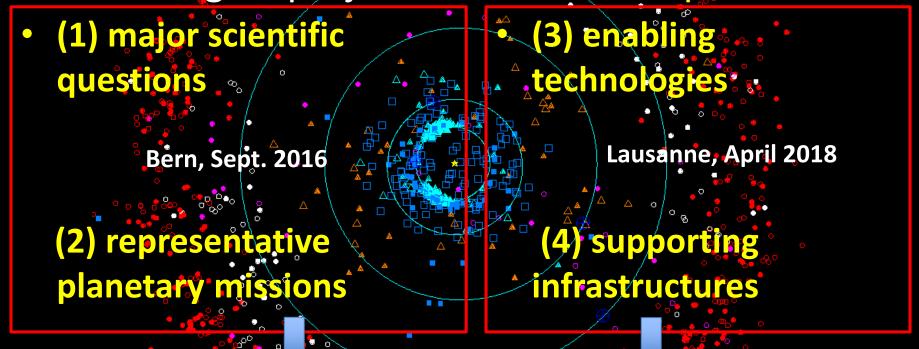
MISSION TYPES AND TARGETS

REPRESENTATIVE MISSIONS

TECHNOLOGY AND INFRASTRUCTURE NEEDS

INFRASTRUCTURE T

PILLAR 4 TECHNOLOGY


PILLAR 3

METHOD (2)

Produce a 50-year foresight of

Planetary Systems Exploration (Solar System)

through a projection of its four « pillars »:

SYNTHESIS Toulouse, June 5-7 2019

Confront our long-term « science dreams » with a projection of our technical capacities

Pillar (1)

Major scientific questions

OVERARCHING SCIENCE GOAL

Study the formation and evolution processes leading to the growth of complexity, and ultimately to the possible emergence of life, through the diversity of planetary systems:

- (1) the growth of molecular complexity, from the Interstellar medium (ISM) to planetary and moons environments;
- (2) the growth of planetary environments complexity, and the conditions under which their evolutionary paths may lead them to become "habitable".

Pillar (1) Major scientific questions

- a. Origins of Planetary Systems
- b. Formation and diversity of Planetary Systems architectures
- c. Diversity of objects
- d. Planetary Systems coupling mechanisms
- e. Emergence of potential habitats
- f. Detection of Life

FROM KEY SCIENCE QUESTIONS TO **KEY MEASUREMENTS AND TO MISSION TYPES**

Key measurements

- Primitive grains in ISD, small bodies and meteorites: crystalline phases, volatiles, organics,... elemental and isotopic composition
- Connect the small body and meteorite records
- Giant planets' atmospheres elemental and isotopic composition

Mission types

Sample return (in situ analysis when impossible) of all types of pristine material and giant planets entry probes

Key measurements

- Composition of ices and clathrates (with their different phases), rare gases and heavy elements (via H2O, NH3, CH4...)
- Cratering record throughout the Solar System

FORMATION and **DIVERSITY of** PLANETARY SYSTEMS ARCHITECTURES

sample return of each object class (in situ analysis when impossible), orbiter and entry probes for giant planets and orbiter and landers for icy satellites.

Key measurements

- Compare the internal structures and bulk compositions of all classes of differentiated objects and try to connect them to their exoplanet counterparts
- Full inventory of the different types of small bodies within each reservoir and of small irregular satellites of giant planets
- Connect planets, satellites, small bodies and meteorites

Mission types Orbital and multiple flyby missions for each type of object

Key measurements

- Global characterization of the different envelopes of each planet and its moons
- Global structure and dynamics of each system (solar system, giant planets systems) e.g. in particular gravitational/tidal interactions
- Electrodynamic and other interactions between satellites, planets and their magnetospheres, heliosphere, Very Local Interstellar Medium (VLISM), Galaxy...

Mission types

Orbiters and surface networks, multipoint missions for magnetospheric interactions. Missions to outer solar system: KBO, Heliopause, Proxima Centauri

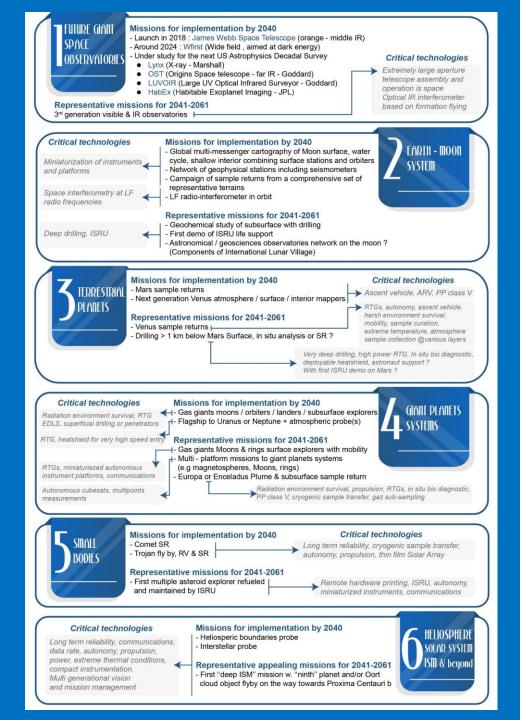
Study habitability of surface habitats and deep habitats

Mission types

- Global orbital monitoring of possibly habitable planets and moons
- In situ analysis of plumes related to cryovolcanic activity
- Characterization of habitablilty conditions at surfaces/subsurfaces of planets and moons: fixed stations (incl. penetrators), rovers...

Key measurements

Develop sensors to try and detect signs of life across the full spectrum of complexity (biomarkers and biomolecules) at surface, sub-surface, atmospheres/exospheres (plumes), oceans and lakes


Mission types

- Plumes measurements by subsatellites;
- Surface or subsurface measurements by fixed station; penetrator, rover...
- Sample return: Moon, Mars, Venus or icy satellites

Pillar (2) Representative space missions Tentative contents

- 1. Future Giant Space Observatories
- 2. The Earth-Moon System
- 3. Terrestrial planets
- 4. Giant planets and their systems
- 5. Small bodies
- 6. Heliosphere, Solar System, ISM and beyond

FROM
KEY MEASUREMENTS
AND
MISSION TYPES
TO
CRITICAL
TECHNOLOGIES

Pillar (3) Enabling technologies Tentative contents

- 1. Exploration platforms of the future
- 2. Platforms subsystems and enabling technologies
- 3. Reaching out to challenging destinations
- 4. New sensors and new sensor technologies for an expanding spectrum of science themes and disciplines
- 5. Meet the challenges of Sample Return
- 6. Disruptive technologies

Pillar (4) Supporting infrastructures 6 main themes

- Earth-Moon system gateways to the Solar System and beyond
- 2. Navigation and communication infrastructures
- 3. Solar System Space Weather
- 4. In-Situ Resources Utilisation facilities
- 5. Sample Return, Curation and Analysis facilities
- 6. Solar-System-Scale Observatories:
 - 1. Space-based global observartories
 - 2. Virtual Observatories

Additional contributions to the four pillars:

Visions from Agencies and industry

Sessi	ion 3 - Foresight visions and programs from agencies and indu	ıstry
Chair	persons: K. J. Kim, Michel Blanc	
15'	JAXA's planetary exploration plan for the next decades	N. Ozaki, Y. Toukaku
15'	Progress and Prospects of Unmanned Deep Space Exploration in China	LI Ming (CAST) Read by L. GUO
15'	KIGAM's new direction for lunar science and exploration in conjunction with lunar and planetary ISRU	K.J. Kim
15'	KEYNOTE TALK: Eurospace recommendations for Human Presence & Exploration	Laura Gatti
15'	OHB Planetary Exploration Enabling Technologies Involvements	Marco Berg
15'	The view from TAS	Maria Antonietta Perino
20'	Round-table discussion – session 3	Moderator: Bernard Foing

Additional contributions to the four pillars: Students and early career professionals contributions

Sessi	on 6 – Students and early career professionals contributions	
Chair	persons: Gengxin XIE, David Mimoun	
15'	Towards an origami based compliant modular system for deep space	S. Bonardi et al.
	exploration: the next generation of cubesat	
15'	The Cathalus Mission Concept to Occator Crater at Ceres: Science, Operations and Systems Design	G. Acciarini et al.
15'	The Calathus Mission Concept to Occator Crater at Ceres: Science, Operations and Systems Design	P. Panicucci et al.
15'	CaLIBSow: Chemical Analysis with LIBS for Ocean Worlds. An instrument concept for Outer Solar System subsurface oceans	B. Chide
15'	Assessing the Habitability of an Active Ocean World: the Etna Mission Concept to Enceladus' Tiger Stripes	P. Panicucci et al.
15'	Remote Localisation and Characterisation of Venus' Seismic and Volcanic Events through a Network of Balloon-Based Instruments	L. Martire et al.
15'	Lunar Outpost Sustaining Human Space Exploration by Utilizing In-Situ Resources with a Focus on Propellant Production	P. Guardabasso,, D. Gaudin et al. (ISAE)
15'	Sample Return Mission to Enceladus	Ignacio Albarran, É. Clavé et al.
	on 7 – Implementation, international collaboration, workshop	synthesis and reportin
	persons: Maria Teresa Capria, R. Mc Nutt	
20'	Keynote talk: The role of the Italian Space Agency in Solar System exploration and international collaboration	Eleonora Ammannito
	Final round-table discussion	Moderators : M. T. Capria, R. Mc Nutt