Return of Icy Samples from Enceladus

Ignacio Albarran-Munoz, Irene Cavallari, Elise Clavé, Alexandre Gallot, Florian Gautier, Axel Manguy
Cassini reveals Enceladus plumes
Scientific goals

ORIGIN ?

LIFE ?
- Habitability
- Stability of the environment
- Life

EVOLUTION ?
Interplanetary phase with gravity assists: 9 years

2055: launch

Cryogenic propulsion
Interplanetary phase with gravity assists: 9 years

2055: launch

Insertion in orbit around Saturn & separation of the Lander and Carrier modules

Horizon 2061 -- Return of Icy Samples for Enceladus -- September 2019 -- Elise Clavé
Optical communication

- Pointing accuracy
- Occultation issues
300 m² of Megaflex solar panels (NASA) 60% efficiency

or solar sail?
Interplanetary phase with gravity assists: 9 years

2055: launch

Insertion in orbit around Saturn & separation of the Lander and Carrier modules

Orbit around Saturn and communication relay between the Lander and Earth

Moon tour To Enceladus: 4 years

Mission at the South Pole: 1 year

Horizon 2061 -- Return of Icy Samples for Enceladus -- September 2019 -- Elise Clavé
Artificial Intelligence to:
- Select landing site
- Select samples
- Trajectory control
- Resilience

- Computational capability
- Reliability
Advanced Stirling radioisotope generator
Landing on icy surface

- Descent
- Temperature
Two sample collectors in parallel

1st system: collect samples falling on the lander

\[V < 170 \text{ m/s} \]

position restrictions due to the distribution of the plumes?

40 cm² collecting plates
0.4 g collected each day
Two sample collectors in parallel

1st system: collect samples falling on the lander

Position restrictions due to the distribution of the plumes?

V < 170 m/s

2nd system: collect an ice core

Study on the surface's physical properties & development of the system

40 cm² collecting plates
0.4 g collected each day
Two sample collectors in parallel

1st system: collect samples falling on the lander
→ position restrictions due to the distribution of the plumes?

40 cm² collecting plates
0.4 g collected each day

V < 170 m/s

2nd system: collect an ice core
→ study on the surface’s physical properties & development of the system

Cryogenic storage of the samples
RDV, transfer of the samples from the Lander to the Carrier
RDV, transfer of the samples from the Lander to the Carrier

Titan tour: < 1 an

Interplanetary phase with a direct transfer: 6 years

2080: Arrival of the samples on Earth

Planetary protection

Horizon 2061 -- Return of Icy Samples for Enceladus --
September 2019 -- Elise Clavé
RDV, transfer of the samples from the Lander to the Carrier

Titan tour: < 1 an

Interplanetary phase with a direct transfer: 6 years

2080: Arrival of the samples on Earth

Total duration: 25 years
Total ΔV: 5 km/s
Thanks for your attention!
Étude de différents lanceurs (NASA SLS, Ariane6, Falcon Heavy)

C3~10,24 km²/s²

Choix SLS → 30 - 38 tonnes de masse initiale

Creech, S. (2017), A new capability for discovery, NASA
Propulsion chimique

Moteur principal (cryogénique LO₂/LH₂):

- $Isp = 464 \text{ s}$
- $T = 400 \text{ N}$, $m_{\text{moteur}} \approx 1,22 \text{ kg}$
- 2 moteurs pour chaque module

SCAO (hydrazine) :

- $Isp \approx 220 \text{ s}$
- $T = 1 \text{ N}$, $m_{\text{moteur}} \approx 0,33 \text{ kg}$
- 16 moteurs pour chaque module