Remote Localisation and Characterisation of Venus’ Seismic and Volcanic Events through a Network of Balloon-Based Instruments

Léo Martire, R. F. Garcia\(^1\), R. Martin\(^2\), Q. Brissaud\(^3\), Y. Chaigneau\(^1\), S. Krishnamoorthy\(^4\), A. Komjathy\(^4\), D. Mimoun\(^1\), J. A. Cutts\(^4\)

\(^1\)ISAE-SUPAERO, Toulouse, France; \(^2\)GET, OMP, Toulouse, France; \(^3\)California Institute of Technology, Pasadena, USA; \(^4\)Jet Propulsion Laboratory, Pasadena, USA

13/09/2018
Overview

1. Geophysics of Venus
 - Seismic and Volcanic Activity
 - Monitoring the Ground from the Atmosphere?
 - Atmospheric Conditions

2. Balloon-Based Instrumentation

3. Example Use of a Balloon Network

4. Take-Home Messages

5. Technical and Scientific Challenges
Venus Balloon-Based Science
Léo Martire

Geophysics of Venus
Seismic and Volcanic Activity
Monitoring the Ground from the Atmosphere?
Atmospheric Conditions

Balloon-Based Instrumentation

Example Use of a Balloon Network

Take-Home Messages

Technical and Scientific Challenges
Seismic and Volcanic Activity

- **Quakes**
 - Observational data: little to no evidence of clear subduction zones. But: *extensive rift system* and *several fault lines*.
 - No evidence of those structures being still active.
 ⇒ *Significant tectonic activity might still take place*, but most probably limited in magnitude.

- **Volcanoes**
 - Young looking basaltic surface, few craters ⇒ *volcanic activity*?
 - Recent evidence suggests active volcanic features [8].
 ⇒ *Volcanic activity* most probable, but rate remains unknown.

Localisation of events (plains, ridges, mountains, coronae, etc.) can help constrain whether or not Venus is still active, and how.
Seismic and Volcanic Activity

• **Quakes**
 - Observational data: little to no evidence of clear subduction zones. But: extensive rift system and several fault lines.
 - No evidence of those structures being still active.
 “⇒ Significant tectonic activity might still take place, but most probably limited in magnitude.”

• **Volcanoes**
 - Young looking basaltic surface, few craters “⇒ volcanic activity?"
 - Recent evidence suggest active volcanic features [8].
 “⇒ Volcanic activity **most probable**, but rate remains unknown.”
Seismic and Volcanic Activity

- **Quakes**
 - Observational data: little to no evidence of clear subduction zones.
 - But: **extensive rift system** and **several fault lines**.
 - No evidence of those structures being still active.
 \Rightarrow **Significant tectonic activity might still take place**, but most probably limited in magnitude.

- **Volcanoes**
 - Young looking basaltic surface, few craters \Rightarrow volcanic activity?
 - Recent evidence suggest active volcanic features [8].
 \Rightarrow Volcanic activity **most probable**, but rate remains unknown.

- **Localisation** of events (plains, ridges, mountains, coronae, etc.)
 can help constrain whether or not Venus is still active, and how.
Monitoring the Ground from the Atmosphere?

- **Key point:** any surface event (quake, volcanic tremor, etc.) will generate acoustic atmospheric waves, **infrasound**, due to the **mechanical coupling** between the ground and the air.

Figure: Numerical simulation of a quake under flat topography, generating **infrasound**. Red/blue is amplitude saturated at ±1 %: in air (top light grey shade), pressure perturbation is represented; in the layered ground (bottom 3 darker grey shades), vertical velocity is represented. Yellow cross: hypocentre (source). Green dots: recording stations.
Monitoring the Ground from the Atmosphere?

- **Key point:** any surface event (quake, volcanic tremor, etc.) will generate acoustic atmospheric waves, **infrasound**, due to the **mechanical coupling** between the ground and the air.

- **Ground-to-atmosphere** wave transmission is well-known [1, 3, 7, 4].

Figure: Numerical simulation of a quake under flat topography, generating **infrasound**. Red/blue is amplitude saturated at ±1 %: in air (top light grey shade), pressure perturbation is represented; in the layered ground (bottom 3 darker grey shades), vertical velocity is represented. Yellow cross: hypocentre (source). Green dots: recording stations.
Monitoring the Ground from the Atmosphere?

- **Key point:** any surface event (quake, volcanic tremor, etc.) will generate acoustic atmospheric waves, **infrasound**, due to the **mechanical coupling** between the ground and the air.

- **Ground-to-atmosphere** wave transmission is well-known [1, 3, 7, 4].

- Propagation of such **infrasound** to **high altitudes** is efficient [2, 6].

 \[\delta v \propto \rho^{-1/2} \]
 \[\Rightarrow \delta v \text{ increases with altitude} \]

Figure: Numerical simulation of a quake under flat topography, **generating infrasound**. Red/blue is amplitude saturated at $\pm 1\%$: in air (top light grey shade), pressure perturbation is represented; in the layered ground (bottom 3 darker grey shades), vertical velocity is represented. Yellow cross: hypocentre (source). Green dots: recording stations.
• [9] reviews ways to study Venus’ interior, including \textbf{balloon-based} concepts

Why from the atmosphere?

1. Conditions at the surface are \textit{harsh}.
 \begin{align*}
 (\approx 735 \text{ K}, \approx 92 \text{ bar})
 \end{align*}

2. Between altitudes 55 to 65 km,
 \begin{itemize}
 \item temperature range from $+27$ to -30 $^\circ$C,
 \item pressure range from 0.50 to 0.10 bar.
 \end{itemize}
 ✓ Technology usable there: \textit{already exists}, and \textit{will survive long enough}.

⇒ What type of instruments?
Overview

1. Geophysics of Venus
 Seismic and Volcanic Activity
 Monitoring the Ground from the Atmosphere?
 Atmospheric Conditions

2. Balloon-Based Instrumentation

3. Example Use of a Balloon Network

4. Take-Home Messages

5. Technical and Scientific Challenges
Balloon-Based Instrumentation I

- Development of such techniques is well under way [3].

Figure: Instrumented helium balloon, field test.
Balloon-Based Instrumentation I

- Development of such techniques is well under way [3].
- Minimum scientific payload: two types of instruments.

Figure: Instrumented helium balloon, field test.
• Development of such techniques is well under way [3].

• Minimum scientific payload:
 two types of instruments.

 ① **Infrasound Sensors**
 • used hanged below balloon
 • records atmospheric pressure

Figure: Infrasound sensor (top box) with noise reduction port (below). ≃ 7 kg, ≃ 40 cm high.
• Development of such techniques is well under way [3].

• Minimum scientific payload:
 two types of instruments.

1. **Infrasound Sensors**
 - used hanged below balloon
 - records atmospheric pressure

2. **Inertial Measurement Units (IMUs)**
 - used attached to balloon envelope
 - records balloon envelope deformations
Balloon-Based Instrumentation II

- For any signal - acoustic wave -
 (seismic/volcanic/atmospheric source),
 a single balloon can acquire both
 1. **scalar** data from **pressure records** and
 2. **vector** data from **envelope deformations**.
Balloon-Based Instrumentation II

• For any signal - acoustic wave - (seismic/volcanic/atmospheric source), a single balloon can acquire both
 1 scalar data from pressure records and
 2 vector data from envelope deformations.

⇒ A single balloon can estimate both the signal’s
 1 amplitude and
 2 direction.

• With 2 infrasound sensors (hanged on a ladder):
⇒ annulus of possible localisation [4] of a ground event.

• With IMUs (balloon envelope, vector data)
⇒ constrain azimuth.

• Such setup is ≃ ready to go. One balloon on Venus: feasible by 2035.

• What to gain by using more than one balloon? Horizon 2061.
Balloon-Based Instrumentation II

- For any signal - acoustic wave - (seismic/volcanic/atmospheric source), a single balloon can acquire both
 1. scalar data from pressure records
 2. vector data from envelope deformations.

⇒ A single balloon can estimate both the signal’s
 1. amplitude
 2. direction.

- With 2 infrasound sensors (hanged on a ladder): angle of arrival.

![Diagram showing balloon, infrasound sensors, incident wave, and possible localisation](image)
For any signal - acoustic wave - (seismic/volcanic/atmospheric source), a single balloon can acquire both:

1. **Scalar** data from *pressure records* and
2. **Vector** data from *envelope deformations*.

A single balloon can estimate both the signal’s

1. **Amplitude** and
2. **Direction**.

With 2 *infrasound sensors* (hanged on a ladder): angle of arrival.

⇒ **Annulus of possible localisation** [4] of a ground event.

Diagram showing balloon, infrasound sensors, and possible localisation.
Balloon-Based Instrumentation II

- For any signal - acoustic wave - (seismic/volcanic/atmospheric source), a single balloon can acquire both
 1. *scalar* data from *pressure records* and
 2. *vector* data from *envelope deformations.*

 ⇒ A single balloon can estimate both the signal’s
 1. *amplitude* and
 2. *direction.*

- With 2 *infrasound sensors* (hanged on a ladder): angle of arrival.
 ⇒ *annulus of possible localisation* [4] of a ground event.

- With *IMUs* (balloon envelope, vector data) ⇒ constrain azimuth.
Balloon-Based Instrumentation II

- For any signal - acoustic wave - (seismic/volcanic/atmospheric source), a single balloon can acquire both
 1. **scalar** data from *pressure records* and
 2. **vector** data from *envelope deformations*.

 ⇒ A single balloon can estimate both the signal’s
 1. **amplitude** and
 2. **direction**.

- With **2 infrasound sensors** (hanged on a ladder): angle of arrival.
 ⇒ *annulus of possible localisation* [4] of a ground event.

- With **IMUs** (balloon envelope, vector data) ⇒ constrain azimuth.

- Such setup is ≃ ready to go. One balloon on Venus: feasible by **2035**.
Balloon-Based Instrumentation II

- For any signal - acoustic wave - (seismic/volcanic/atmospheric source), a single balloon can acquire both
 1. scalar data from pressure records and
 2. vector data from envelope deformations.

 ⇒ A single balloon can estimate both the signal’s
 1. amplitude and
 2. direction.

- With 2 infrasound sensors (hanged on a ladder): angle of arrival.
 ⇒ annulus of possible localisation [4] of a ground event.

- With IMUs (balloon envelope, vector data) ⇒ constrain azimuth.

- Such setup is ≃ ready to go. One balloon on Venus: feasible by 2035.

- What to gain by using more than one balloon? Horizon 2061.
Overview

1. Geophysics of Venus
 Seismic and Volcanic Activity
 Monitoring the Ground from the Atmosphere?
 Atmospheric Conditions

2. Balloon-Based Instrumentation

3. Example Use of a Balloon Network

4. Take-Home Messages

5. Technical and Scientific Challenges
Networking with Free-Floating Balloons

- Suppose a ground event, producing infrasound.
Networking with Free-Floating Balloons

- Suppose a ground event, producing infrasound.
- Assume an operational network of balloons in Venus’ troposphere,
Networking with Free-Floating Balloons

- Suppose a ground event, producing infrasound.
- Assume an operational network of balloons in Venus’ troposphere, equipped with 2 infrasound sensors.
Networking with Free-Floating Balloons

- Suppose a ground event, producing infrasound.
- Assume an **operational network** of balloons in Venus’ troposphere, equipped with 2 **infrasound sensors**.
- For each balloon, **angle of arrival** \Rightarrow annulus of possible localisation.

Figure: Localisation estimation using angle of arrival, for 1 balloon.
Networking with Free-Floating Balloons

- Suppose a ground event, producing infrasound.
- Assume an operational network of balloons in Venus’ troposphere, equipped with 2 infrasound sensors.
- Intersecting annuli from many balloons ⇒ more precise estimation.

Figure: Localisation estimation using angle of arrival, for 2 balloons.
Networking with Free-Floating Balloons

- Suppose a ground event, producing infrasound.
- Assume an **operational network** of balloons in Venus’ troposphere, equipped with 2 infrasound sensors.
- **Intersecting annuli** from many balloons ⇒ more precise estimation.

Figure: Localisation estimation using angle of arrival, for 3 balloons.
Networking with Free-Floating Balloons

• Suppose a ground event, producing infrasound.
• Assume an operational network of balloons in Venus’ troposphere, equipped with 2 infrasound sensors.
• Intersecting annuli from many balloons ⇒ more precise estimation.

Figure: Localisation estimation using angle of arrival, comparison with "real" localisation.
Networking with Free-Floating Balloons

- Suppose a ground event, producing infrasound.
- Assume an operational network of balloons in Venus’ troposphere, equipped with 2 infrasound sensors and IMUs.
Networking with Free-Floating Balloons

- Suppose a ground event, producing infrasound.
- Assume an operational network of balloons in Venus’ troposphere, equipped with 2 infrasound sensors and IMUs.
- For each balloon, IMUs add an azimuth estimation.

\[\text{Figure: Localisation estimation using angle of arrival and azimuth, for 1 balloon.} \]
Networking with Free-Floating Balloons

- Suppose a ground event, producing infrasound.
- Assume an operational network of balloons in Venus’ troposphere, equipped with 2 infrasound sensors and IMUs.
- For each balloon, IMUs add an azimuth estimation.

Figure: Localisation estimation using angle of arrival and azimuth, for 2 balloons.
Networking with Free-Floating Balloons

- Suppose a ground event, producing infrasound.
- Assume an operational network of balloons in Venus’ troposphere, equipped with 2 infrasound sensors and IMUs.
- For each balloon, IMUs add an azimuth estimation.

Figure: Localisation estimation using angle of arrival and azimuth, for 3 balloons.
Networking with Free-Floating Balloons

- Suppose a ground event, producing infrasound.
- Assume an operational network of balloons in Venus’ troposphere, equipped with 2 infrasound sensors \textbf{and IMUs}.
- For each balloon, \textbf{IMUs add an azimuth estimation}.

\textbf{Figure}: Localisation estimation using angle of arrival and azimuth, comparison with "real" localisation.
Overview

1. Geophysics of Venus
 Seismic and Volcanic Activity
 Monitoring the Ground from the Atmosphere?
 Atmospheric Conditions

2. Balloon-Based Instrumentation

3. Example Use of a Balloon Network

4. Take-Home Messages

5. Technical and Scientific Challenges
Take-Home Messages

- **Scientific return on investment:**
 - A better understanding of Venus’ geophysics and interior.
 1. detection/localisation of events (expected to be seismic or volcanic),
 2. characterisation of Venus’ tectonics, seismicity, and volcanicity.
Take-Home Messages

- Scientific return on investment:
 - A better understanding of Venus’ geophysics and interior.
 1. detection/localisation of events (expected to be seismic or volcanic),
 2. characterisation of Venus’ tectonics, seismicity, and volcanicity.
 ⇒ Enhanced knowledge on the formation of terrestrial planets.
Take-Home Messages

- **Scientific return on investment:**
 - A better understanding of Venus’ geophysics and interior.
 1. detection/localisation of events (expected to be seismic or volcanic),
 2. characterisation of Venus’ tectonics, seismicity, and volcanicity.

 \[\Rightarrow \text{Enhanced knowledge on the formation of terrestrial planets.} \]

- **Atmospheric science** (thunderstorms, atmosphere probing).
Take-Home Messages

• Scientific return on investment:
 • A better understanding of Venus’ geophysics and interior.
 1. detection/localisation of events (expected to be seismic or volcanic),
 2. characterisation of Venus’ tectonics, seismicity, and volcanicity.
 ⇒ Enhanced knowledge on the formation of terrestrial planets.

• Atmospheric science (thunderstorms, atmosphere probing).

• Other instruments? Chemical analysis (LIBS), biology within clouds, etc.
Take-Home Messages

• Scientific return on investment:
 • A better understanding of Venus’ geophysics and interior.
 1 detection/localisation of events (expected to be seismic or volcanic),
 2 characterisation of Venus’ tectonics, seismicity, and volcanicity.
 ⇒ **Enhanced knowledge on the formation of terrestrial planets.**
• **Atmospheric science** (thunderstorms, atmosphere probing).
• Other instruments? Chemical analysis (LIBS), biology within clouds, etc..
• Balloon-based seismology: today **well under way**. One balloon by 2035.
Take-Home Messages

- **Scientific return on investment:**
 - A better understanding of Venus’ geophysics and interior.
 1. detection/localisation of events (expected to be seismic or volcanic),
 2. characterisation of Venus’ tectonics, seismicity, and volcanicity.
 ⇒ *Enhanced knowledge on the formation of terrestrial planets.*
 - **Atmospheric science** (thunderstorms, atmosphere probing).
 - Other instruments? Chemical analysis (LIBS), biology within clouds, etc..

- Balloon-based seismology: today **well under way**. One balloon by 2035.

- Operating a **network** of science balloons ⇒ **new possibilities**:
 - enhanced source localisation (this presentation),
 - continuous and **global** (≠ local with 1 balloon) monitoring.
Overview

1. Geophysics of Venus
 Seismic and Volcanic Activity
 Monitoring the Ground from the Atmosphere?
 Atmospheric Conditions

2. Balloon-Based Instrumentation

3. Example Use of a Balloon Network

4. Take-Home Messages

5. Technical and Scientific Challenges
Technical and Scientific Challenges

⚠️ Ongoing work, for one balloon. Should be resolved by 2061 (hopefully).
Technical and Scientific Challenges

⚠️ Ongoing work, for one balloon. Should be resolved by 2061 (hopefully).

- **Technical Challenges**
 - Balloon life expectancy and manoeuvrability.
 - Power? Batteries, solar panels, radioisotopes?
 - Materials? Resistance to sulfuric acid in clouds, to shear wind gusts?
 - Manoeuvrability? Free-floating, controllable?
 - Earth communication: bring back data. Antenna, band? Orbiter relay?

- **Scientific Challenges**
 - Atmospheric noise sources:
 - Atmospheric dynamics' effects? Gravity waves, bow waves [5], etc.
 - Noise-reducing inlets for pressure sensors? E.g. against wind gusts.
 - Spacecraft effects:
 - Electromagnetic/mechanical noise? Others?
 - Altitude changes (i.e. ambient pressure changes)?
Technical and Scientific Challenges

⚠️ Ongoing work, for one balloon. Should be resolved by 2061 (hopefully).

- **Technical Challenges**
 - Balloon life expectancy and manoeuvrability.
 - Power? Batteries, solar panels, radioisotopes?
 - Materials? Resistance to sulfuric acid in clouds, to shear wind gusts?
 - Manoeuvrability? Free-floating, controllable?
 - Earth communication: bring back data. Antenna, band? Orbiter relay?

- **Scientific Challenges**
 - Atmospheric noise sources:
 - Atmospheric dynamics’ effects? Gravity waves, bow waves [5], etc..
 - Noise-reducing inlets for pressure sensors? *E.g.* against wind gusts.
 - Spacecraft effects:
 - Electromagnetic/mechanical noise? Others?
 - Altitude changes (*i.e.* ambient pressure changes)?
Thank you for your attention.

Questions?

Contact: leo.martire@isae-supaero.fr
The authors thank the TGCC (Paris, France, project GENCI gen10476) and CALMIP (Toulouse, France, project #p1404) computing centres for HPC resources. The authors acknowledge both the "Direction Générale de l'Armement" (French DoD) and the "Région Occitanie" for funding the PhD grant of Léo Martire. The authors also wish to thank the JPL/Caltech ballooning team (S. Krishnamoorthy, A. Komjathy, J. A. Cutts, and collaborators) for ongoing fruitful collaborations and discussions.
References I

