Towards an origami based compliant modular system for deep space exploration: the next generation of CubeSat

Stéphane Bonardi (ISAS/JAXA)
Stefania Soldini (University of Liverpool)
Naoya Ozaki (ISAS/JAXA)

13 September 2019
Our concept: swarm of robotic CubeSat

Phase I: Folding/Unfolding
Phase II: Solar sailing
Phase III: mapping
Phase IV: active airbag/feather landing
Phase V: Exploitation

Central unit
Relay unit
Mapping unit
Robotic unit
Our concept: swarm of robotic CubeSat

- Versatile
- Upgradable
- Affordable
- Reusable

Phases:
- Phase I: Folding/Unfolding
- Phase II: Solar sailing
- Phase III: Mapping
- Phase IV: Active airbag/feather landing
- Phase V: Exploitation
Outline

1. Background
 • Modular robotics
 • Origami robotics
 • Bio-inspired approach

2. Hardware contribution
 • Compliant membrane
 • Artificial muscle actuation
 • Exoskeletons

3. Control
 • Cave exploration
 • Multi-robot coordination
 • Self-reconfiguration

4. Scenarios
Outline

1. Background
 • Modular robotics
 • Origami robotics
 • Bio-inspired approach

2. Hardware contribution
 • Compliant membrane
 • Artificial muscle actuation
 • Exoskeletons

3. Control
 • Cave exploration
 • Multi-robot coordination
 • Self-reconfiguration

4. Scenarios
Background: modular robotics
Background: modular robotics
Background: modular robotics

M-Blocks, MIT
SMORES-EP, UPenn
Superbot, USC

Roombots, EPFL
M-TRAN, AIST
Polybots, PARC
ATRON, USD

All images are the property of their respective authors.
Background: origami robotics
Versatility

Robustness

Roombots reconfiguration: from tripod to snake

http://biorob.epfl.ch/roombots
Biorobotics Laboratory, EPFL, Lausanne, Switzerland. November 2013.
Lower performance

Locomotion of a quadrupedal structure made of five Roombots modules

http://biorob.epfl.ch/roombots
Biorobotics Laboratory, EPFL, Lausanne, Switzerland. February 2014.
Bio-inspired approach
Outline

1. Background
 • Modular robotics
 • Origami robotics
 • Bio-inspired approach

2. Hardware contribution
 • Compliant membrane
 • Artificial muscle actuation
 • Exoskeletons

3. Control
 • Cave exploration
 • Multi-robot coordination
 • Self-reconfiguration

4. Scenarios
Hardware contribution

Compliance | Soft actuation | Differentiation

All images are the property of their respective authors.
Hardware contribution

Compliance

Smart materials

Smart assembly

Soft actuation

Artificial muscles

Differentiation

All images are the property of their respective authors.
Hardware: robotic exoskeletons

Exoskeletons

- Rigid Core
- Soft envelope
- Artificial muscle

All images are the property of their respective authors.
Hardware contribution

Compliance

Soft actuation

Differentiation
Outline

1. **Background**
 - Modular robotics
 - Origami robotics
 - Bio-inspired approach

2. **Hardware contribution**
 - Compliant membrane
 - Artificial muscle actuation
 - Exoskeletons

3. **Control**
 - Cave exploration
 - Multi-robot coordination
 - Self-reconfiguration

4. **Scenarios**
Control: from individual units to colony

Exploration

Coordination

Reconfiguration

All images are the property of their respective authors.
Control: from individual units to colony

Exploration: Caves exploration

Coordination: Heterogeneous swarm control

Reconfiguration
Control: self-reconfiguration

Metamorphosis from Four legged walker to a line

Left: MTRAN (AIST); Right: ATRON (K. Stoy et al.)
Control: self-reconfiguration
Control: from individual units to colony

Exploration

Coordination

Reconfiguration
Outline

1. Background
 • Modular robotics
 • Origami robotics
 • Bio-inspired approach

2. Hardware contribution
 • Compliant membrane
 • Artificial muscle actuation
 • Exoskeletons

3. Control
 • Cave exploration
 • Multi-robot coordination
 • Self-reconfiguration

4. Scenarios
Scenario I: harsh terrain exploration

Scenario II: cave exploration

Scenario III: resources harvesting

Scenario IV: infrastructures building
Scenario I: harsh terrain exploration

Scenario II: cave exploration

Scenario III: resources harvesting

Scenario IV: infrastructures building

All images are the property of their respective authors (NASA, JAXA, Misc.).
Scenario I: harsh terrain exploration

Scenario II: cave exploration

Scenario III: resources harvesting

Scenario IV: infrastructures building
Scenario I: harsh terrain exploration

Scenario II: cave exploration

Scenario III: resources harvesting

Scenario IV: infrastructures building

- Mining
- Sampling
- Electricity harvesting
- Communication
- Adapative shelter
Conclusion

• Novel concept of robotic satellites:
 • Increase in robustness and versatility
 • Multi-target missions
 • Upgradable and reusable hardware
 • Lower cost

• Full robotic ecosystems for space exploration and colonization
The future is now!

Thank you for your attention

Dr. Bonardi Stéphane

stephane.bonardi@jaxa.jp

ISAS - Kubota Lab

All images are the property of their respective authors.