Comet Interceptor

The new ESA mission to a dynamically new comet

@cometintercept

Mission Leads:
Geraint Jones
(UCL Mullard Space Science Laboratory, UK)
Colin Snodgrass
(University of Edinburgh, UK)
Overview

• On June 20 2019, Comet Interceptor was selected by ESA as its first F-class mission.

• Maximum cost to ESA at completion, excluding launch: €150M.

• ESA member states and other collaborating agencies generally fund instruments and the science teams.

• Shared launch with Ariel exoplanet telescope, to Sun-Earth L2 point, in 2028
 • Limits on mass (originally 1000 kg, now 800 kg)
 • Must fit underneath Ariel, and be designed to support it during launch
Comet Interceptor is a mission targeting a dynamically-new comet, or an interstellar object.

Why?

• All previous comet missions have been to objects that have passed the Sun many times

• Targets were relatively evolved, with thick dust mantles

• A dynamically-new comet (DNC) is one that is probably nearing the Sun for the first time

• A mission to a DNC would encounter a pristine comet, with surface ices as first laid down at the Solar System’s formation
Comet Interceptor

Kuiper Belt Objects (KBOs)
Trans-Neptunian Objects (TNOs)

Jupiter Family Comets (JFCs)
Long Period Comets (LPCs)
(following multiple orbits around the Sun)

Minimal processing/evolution

Thermally processed/physically evolved

Centaurs

Migration into the inner solar system

DNCs
Comet Interceptor is a mission targeting a dynamically-new comet, or an interstellar object.

How?

- The only way to encounter a DNC is to discover it inbound with enough warning to direct a spacecraft to it.

- The likelihood of this happening will soon be greatly increased by LSST – the *Large Synoptic Survey Telescope*.
 - LSST probably won’t increase the number of DNCs found every year, but will increase the distance at which they’re discovered inbound.

- Comet Interceptor spacecraft can wait in dynamically-stable location L2 until the target is found.

Figures showing discovery geocentric distance vs discovery year.

M. Królikowska & P. A. Dybczynski 2019, arXiv 1901.01722
Second interstellar object just found: first highly active comet!

• Currently designated C/2019 Q4 (Borisov)
• Hyperbolic: $e=3.5+/-0.2$, $q=2.0$ au, $i=44^\circ$, $v=30$ km/s (all routine)
• Currently inbound, $V = 18^{th}$ magnitude
• Close to the Sun on the sky, much more observable in Oct/Nov/Dec, should be visible for ~ a year
• Closest approach: Dec 29 at 2.0 au
Multiple spacecraft architecture

- F-class call encouraged multi-point measurements

- Very useful at a comet:
 - To separate time and space variation in coma
 - To enable simultaneous coma + nucleus + magnetic fields studies at different distances

- Also useful in flyby case, separating safe / distant measurements and high risk / high gain close approaches
New Science

• Multi-point measurements of cometary environment, including plasma: separation of spatial and temporal effects.

• Energetic Neutral Atoms: first observations of solar wind-neutral charge exchange processes at a comet

• Multiple views of cometary nucleus: views from three spacecraft reveal 3D structure of nucleus and coma from a single flyby

• Entire Visible Sky (EnVisS): Multispectral and polarimetric mapper All-sky view of dust, including polarimetry, neutral gas, and ion features
Multiple spacecraft architecture

• A: main spacecraft (ESA)
 • Passes sunward of comet at ~1000 km ('safe' distance)
 • Data relay for other spacecraft
 • Propulsion + communication
 • Minimum payload to ensure results even if other spacecraft fail

• B1: inner coma (JAXA)
 • Targeted to pass through inner coma
 • Will probably survive encounter
 • In-situ sampling, coma imaging
 • 3 axis stabilised, ~24U sized

• B2: nucleus + coma (ESA)
 • Targeted at nucleus (but unlikely to actually hit it)
 • May survive, but designed to be expendable
 • In-situ sampling, nucleus + coma imaging
 • Spin stabilised, no AOCS
Mission Profile

- Mission ‘parked’ at L2 after launch with Ariel, waits for new target discovery by LSST or other ground-based survey (2-3 years)
- Short cruise and fast flyby near 1 AU
 - Encounter location within a restricted heliocentric distance range, for thermal and power reasons
- Encounter has to take place close to the ecliptic – each comet crosses the ecliptic at two locations
- Mothership with remote sensing payload, distant ‘safe’ flyby (few 1000 km)
- Released sub-spacecraft take instruments on different trajectories through coma, including much closer to nucleus
Challenges and Solutions

CHALLENGES
• Mission has to be designed to encounter comets on a wide range of possible trajectories and encounter speeds
• Retrograde orbits could mean flyby speeds > 70 km/s in worst case (increases risk of dust impact damage)—have to design for this scenario
• Cost means that entire mission should be < 5 years

SOLUTIONS
• Spacecraft design can cope with range of different encounter geometries — no HGA to Earth at encounter. Dust shielding equivalent to that used on Giotto
• Wait at L2 limited to ~3 years
• If no suitable target found, backup short period comets identified.
 Mission to short period comet will carry out new science: not repeat of previous missions.
Interstellar Targets?

- Unlikely to occur, but possibility exists that an interstellar target (highly hyperbolic orbit) could be discovered and reached.

- ‘Oumuamua study (Seligman & Laughlin 2018) showed that LSST finds one accessible target in ~10 years.
 - non-negligible chance of a suitable target within 2-3 years.
 - but they assume a much higher delta-v than is realistic for comet interceptor (dedicated Falcon-Heavy launch).

- Possibly different science if low activity like ‘Oumuamua, but would be hard to turn down such an opportunity.

- Payload optimized for DNC, but would still be useful at ‘Oumuamua.

ESO/M.Kornmesser
Proposed Spacecraft Separation Scenario

For simplicity and to minimize cost, sub-spacecraft B2 will be spin-stabilized, no attitude and orbital control systems.
Close Encounter Scenario

- Spacecraft B2
 - ESA
 - (Remote sensing; Mass Spectrometer; Dust, Fields & Particles)

- Spacecraft B1
 - JAXA
 - (UV camera; Visible camera; Fields & Particles)

- Spacecraft A
 - ESA
 - (Remote sensing; Dust, Fields & Particles)
 - Primary HGA for mission.

Nucleus

Closest approach distance decided by activity level (nominally ~1000 km)

Post-encounter data transmission to Earth via HGA (weeks to months duration)

Flyby speed unknown: range <10 km/s to >80 km/s

(Continued solar wind observations if either/both B1 and B2 survive)
Proposed payload

<table>
<thead>
<tr>
<th>Spacecraft</th>
<th>Instrument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ESA</td>
<td>CoCa</td>
<td>Visible/NIR imager</td>
</tr>
<tr>
<td></td>
<td>MIRMIS</td>
<td>NIR/Thermal IR spectral imager</td>
</tr>
<tr>
<td></td>
<td>DFP</td>
<td>Dust, Fields & Plasma (similar on A and B2)</td>
</tr>
<tr>
<td>B2 ESA</td>
<td>MANIaC</td>
<td>Mass spectrometer</td>
</tr>
<tr>
<td></td>
<td>EnVisS</td>
<td>All-sky multispectral visible imager</td>
</tr>
<tr>
<td></td>
<td>OPIC</td>
<td>Visible/NIR imager</td>
</tr>
<tr>
<td>B1 JAXA</td>
<td>HI</td>
<td>Lyman-alpha Hydrogen imager</td>
</tr>
<tr>
<td></td>
<td>PS</td>
<td>Plasma Suite</td>
</tr>
<tr>
<td></td>
<td>WAC</td>
<td>Wide Angle Camera</td>
</tr>
</tbody>
</table>

- F-class call constraints required high TRL instrumentation: a minimum TRL of 5/6 attainable by the end of 2019
- Proposed payload has strong heritage from past missions and instruments already developed/built for future missions
Comet Interceptor
National Contributions

Spacecraft designs and instrument allocations TBC
Comet Interceptor Team

Mission Proposal Lead: Prof. Geraint Jones, UCL Mullard Space Science Laboratory, UK
Mission Proposal Deputy Lead: Dr. Colin Snodgrass, University of Edinburgh, UK

The Comet Interceptor team comprises an international group of 130 scientists and engineers from 68 institutions and 24 countries (in Europe, USA and Japan).
What Next?

• Following selection, a Concurrent Design Facility (CDF) study initiated
• Instrument designs being refined and discussed with ESA
• Second CDF study later in 2019
• Industrial call for proposals in 2020
Interested?

Comet Interceptor
An ESA mission to an ancient world

http://www.cometinterceptor.space/

@cometintercept g.h.jones@ucl.ac.uk & csn@roe.ac.uk