Comet Interceptor

The new ESA mission to a dynamically new comet

Mission Leads: Geraint Jones (UCL Mullard Space Science Laboratory, UK) Colin Snodgrass (University of Edinburgh, UK)

@cometintercept

Overview

- On June 20 2019, **Comet Interceptor** was selected by ESA as its first F-class mission.
- Maximum cost to ESA at completion, excluding launch: €150M.
- ESA member states and other collaborating agencies generally fund instruments and the science teams.
- Shared launch with Ariel exoplanet telescope, to Sun-Earth L2 point, in 2028
 - Limits on mass (originally 1000 kg, now 800 kg)
 - Must fit underneath Ariel, and be designed to support it during launch

Comet Interceptor is a mission targeting a dynamically-new comet, or an interstellar object.

Why?

- All previous comet missions have been to objects that have passed the Sun many times
- Targets were relatively evolved, with thick dust mantles
- A dynamically-new comet (DNC) is one that is probably nearing the Sun for the first time
- A mission to a DNC would encounter a pristine comet, with surface ices as first laid down at the Solar System's formation

Comet Interceptor is a mission targeting a dynamically-new comet, or an interstellar object.

How?

- The only way to encounter a DNC is to discover it inbound with enough warning to direct a spacecraft to it
- The likelihood of this happening will soon be greatly increased by LSST – the Large Synoptic Survey Telescope
 - LSST probably won't increase the number of DNCs found every year, but will increase the distance at which they're discovered inbound
- Comet Interceptor spacecraft can wait in dynamically-stable location L2 until the target is found

M. Królikowska & P. A. Dybczynski 2019, arXiv 1901.01722

Multiple spacecraft architecture

- F-class call encouraged multi-point measurements
- Very useful at a comet:
 - To separate time and space variation in coma
 - To enable simultaneous coma + nucleus + magnetic fields studies at different distances
- Also useful in flyby case, separating safe / distant measurements and high risk / high gain close approaches

New Science

• Multiple views of cometary nucleus:

views from three spacecraft reveal 3D structure of nucleus and coma from a single flyby

 Entire Visible Sky (EnVisS): Multispectral and polarimetric mapper All-sky view of dust, including polarimetry, neutral gas, and ion features

 Energetic Neutral Atoms: first observations of solar wind-neutral charge exchange processes at a comet

Multi-point

measurements of

including plasma:

temporal effects.

cometary environment,

separation of spatial and

Multiple spacecraft architecture

- A: main spacecraft (ESA)
 - Passes sunward of comet at ~1000 km ('safe' distance)
 - Data relay for other spacecraft
 - Propulsion + communication
 - Minimum payload to ensure results even if other spacecraft fail
- B1: inner coma (JAXA)
 - Targeted to pass through inner coma
 - Will probably survive encounter
 - In-situ sampling, coma imaging
 - 3 axis stabilised, ~24U sized
- B2: nucleus + coma (ESA)
 - Targeted at nucleus (but unlikely to actually hit it)
 - May survive, but designed to be expendable
 - In-situ sampling, nucleus + coma imaging
 - Spin stabilised, no AOCS

Mission Profile

- Mission 'parked' at L2 after launch with Ariel, waits for new target discovery by LSST or other ground-based survey (2-3 years)
- Short cruise and fast flyby near 1 AU
 - Encounter location within a restricted heliocentric distance range, for thermal and power reasons
- Encounter has to take place close to the ecliptic each comet crosses the ecliptic at two locations
- Mothership with remote sensing payload, distant 'safe' flyby (few 1000 km)
- Released sub-spacecraft take instruments on different trajectories through coma, including much closer to nucleus

Challenges and Solutions

CHALLENGES

- Mission has to be designed to encounter comets on a wide range of possible trajectories and encounter speeds
- Retrograde orbits could mean flyby speeds > 70 km/s in worst case (increases risk of dust impact damage)- have to design for this scenario
- Cost means that entire mission should be < 5 years

SOLUTIONS

- Spacecraft design can cope with range of different encounter geometries no HGA to Earth at encounter. Dust shielding equivalent to that used on Giotto
- Wait at L2 limited to ~3 years •
- If no suitable target found, backup short period ulletcomets identified.

Mission to short period comet will carry out new science: not repeat of previous missions.

Relative fly-by velocty [km/s]

Interstellar Targets?

- Unlikely to occur, but possibility exists that an interstellar target (highly hyperbolic orbit) could be discovered and reached
- 'Oumuamua study (Seligman & Laughlin 2018) showed that LSST finds one accessible target in ~10 years
 - non-negligible chance of a suitable target within 2-3 years
 - but they assume a much higher delta-v than is realistic for comet interceptor (dedicated Falcon-Heavy launch)
- Possibly different science if low activity like 'Oumuamua, but would be hard to turn down such an opportunity
- Payload optimized for DNC, but would still be useful at 'Oumuamua

ESO/M.Kornmesser

Proposed Spacecraft Separation Scenario

For simplicity and to minimize cost, sub-spacecraft B2 will be spin-stabilized, no attitude and orbital control systems.

Close Encounter Scenario

Proposed payload

Spacecraft	Instrument	Description	
A ESA B2 ESA	CoCa	Visible/NIR imager	 F-clas requir instru
	MIRMIS	NIR/Thermal IR spectral imager	
	DFP	Dust, Fields & Plasma (similar on A and B2)	TRL of end o
			• Propo
	MANIaC	Mass spectrometer	herita
	EnVisS	All-sky multispectral visible imager	and in develo missio
	OPIC	Visible/NIR imager	
B1	HI	Lyman-alpha Hydrogen imager	
JAXA	PS	Plasma Suite	
	WAC	Wide Angle Camera	

- F-class call constraints required high TRL instrumentation: a minimum TRL of 5/6 attainable by the end of 2019
- Proposed payload has strong heritage from past missions and instruments already developed/built for future missions

Comet Interceptor *National Contributions*

Spacecraft designs and instrument allocations TBC

Comet Interceptor Team

Mission Proposal Lead: Prof. Geraint Jones, UCL Mullard Space Science Laboratory, UK

Mission Proposal Deputy Lead: Dr. Colin Snodgrass, University of Edinburgh, UK

The Comet Interceptor team comprises an international group of 130 scientists and

What Next?

- Following selection, a Concurrent Design Facility (CDF) study initiated
- Instrument designs being refined and discussed with ESA
- Second CDF study later in 2019
- Industrial call for proposals in 2020

Hardware Team Meeting September 6, Edinburgh

Interested?

@cometintercept

g.h.jones@ucl.ac.uk & csn@roe.ac.uk