

September, 12th, 2019 Dr. Christophe Figus

In space manufacturing and assembly of large systems

DEFENCE AND SPACE

N

Market Opportunities

9 Business cases more deeply studied 18 Business cases investigated

E3	E2	E 1	1	D3	D2	D1	C4 /	C3	C2	C1	B4	B 3	B2	B1	A4 /	A3	A2 /	A1	Mission
Assemble and Upgrade Solar Panels for Exploration	End-to-End Trusses (Boom)	elescope for low frequency	Astronomical science based on a 1km radio-	Assemble & Upgrade Solar Panels for telecom GEO	Assemble repair satellite	End-to-End Antennae for exploration	Assemble shielding for Exploration	End-to-End Trusses in Leo (Leo Hub)	Assemble or Repair Structures for Exploration	End-to-End Antennae for Telecom (Large antenna)	Assemble shielding for Scientific	End-to-End Trusses in Geo (Geo Hub)	Optical or X-Rays telescope using in space assembly of various modules	End-to-End Antennae for Navigation	Assemble Radiators for Telecom	End-to-End Trusses in Leo (Leo Hub)	Assemble or Repair Structures for telecom GEO	End-to-End Antennae for Telecom (Double capacity)	Use case Name
Exploration	generic	Scientific		Telecom	Observation	Exploration	Exploration	Observation	Exploration	Telecom	Scientific	Telecom	Scientific	Navigation	Telecom	Scientific	Telecom	Telecom	Application

Necessary Mass (NM): Mass required for In Orbit mission Useful Mass (UM): Mass that generates customer value Total Mass (TM): Mass at launch

NM/TM	UM/TM		
45%	20%	Antenna Use case	
60%	11%	Spacecraft Use case	

ISS: 420 Tons / 12 years of assembly \$50b-\$100b

ω

Way forward/Future applications

New Frontiers

Astronomy

LOP-G Lunar orbital PF gateway

30% mass saving

\$50K/kg Moon orbit 130kg/m³ → 90kg/m³ LOP-G volume = 200 m³

=\$27B detect more ExoEarth ExoEarth, \$9B for the Foldable parts

JWST (5.6 m) 10

Next one: 12m to telescope only.

9,6m² antenna dish (51kg) 5,4 T & \$80M / launch Constellation 600 s/c

SC payload utilization capacity / Satcom **Double antenna**

increase of efficiency X2 antenna rate70%

Connectivity

Broadband

30% mass saving

a single PF repairable Upgradable, scalable, 80 payloads of 200 kg on Space Hub

IoT Connectivity

Earth Observation Geo-Information/

4

σı

Cesa AIRBUS

ი

Roadmap

- 2017-2018 : Develop facilities:
- Simulator : Manufacturing space lab (DEMETRA)
- Engineering Model Metal3D (3D printer)
- Develop robotic.
- 2018-2019 : Develop demonstrator :
- Process definition & validation
- Antenna reflector Assembly
- 2020-2022: Qualification
- Metal3D PFM delivery
- Robotic Factory Qualification
- 2022-2023: In Orbit demonstration
- SpaceSat experiment delivery

ω

To Make future a reality

Join us

2061?

9