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Motivation and Background

Giant planets have played a significant role in shaping the architecture
of our planetary system and the evolution of the smaller, inner
worlds.

The efficiency of remote sensing observations has some limitations,
especially to study the bulk atmospheric composition.

Example of these restrictions: exploration of Jupiter, where key
measurements such as the determination of the noble gases and
helium abundances have only been made in situ by the Galileo probe.

The Galileo probe provided a giant step forward regarding our
understanding of Jupiter. However, it is not known whether these
measurements are representative of the whole set of giant planets of
the solar system.



What is needed?

= Bulk composition: heavy element (> “He),
abundances (O, C, N, S, Ne, Ar, Kr, Xe)

= |sotopic ratios: noble gas isotopes, D/H, 3C/°C,
15N/14N

*= He/H, ratio: for planetary heat balance and interior
processes
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What did we learn from JUNO?

Thermochemical equilibrium models predict the base of ammonia cloud in Jupiter at ~0.7 bar. However Juno

MWR data show a highly complex distribution of ammonia over Jupiter: the well-mixed ammonia is reached
at atmospheric pressures exceeding 100 bars!!

In the case of the icy giants, well-mixed water may be found only at several kilobars to tens of kilobars
pressure levels (Atreya et al. 2018).



Isotopic ratios measured in Jupiter, Saturn, Uranus, and Neptune

Isotopic ratio | Jupiter ___|Satum ___| Uranus __| Neptune __

D/H (in H,)® (2.60£0.7)x10°  1.70707°x10° (4.4£0.4)x10°  (4.1%0.4)x 10"
3He/*He(2) (1.66 £0.05) x 10* -- - --
12C/13C (in CH,)®  92.6%,° 91.8%% - -
1AN/5N (in NHa)@  434.8%% > 357 - -
20Ne/22Nel®) 13+2 — - -
36Ar/38Ar(®) 5.6 + 0.25 — — -

136X e /total Xel?) 0.076 + 0.009 -- -- --
134Xe/total Xe(® 0.091 + 0.007 -- -- --
132X e /total Xe® 0.290 + 0.020 -- -- --
131%e/total Xe(®®  0.203 + 0.018 -- -- --
130Xe/total Xe(’))  0.038 + 0.005 -- -- --
129%a /total Xe(12)  0.285 + 0.021 -- -- --

128%a /total Xe(13)  0.018 + 0.002 -- -- --

(1) Mahaffy et al. (1998) for Jupiter, Lellouch et al. (2001) for Saturn, Feuchtgruber et al. (2013) for Uranus and Neptune. (2) Mahaffy et al.
(1998) for Jupiter. (3) Niemann et al. (1998) for Jupiter, Fletcher et al. (2009a) for Saturn. (4) Wong et al. (2004) for Jupiter, Fletcher et al.
(2014b) for Saturn. (5-13) Mahaffy et al. (2000) for Jupiter.



Delivery of Volatiles to the Giant Planets — Solids
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Fig. 1. A plot of the fluxes of evolved CO, N7, Ar and water during warm-
ing up of 0.1 um ice layer. The gas-laden ice was deposited at 27 K from a
HyO:CO:Ny:Ar = 100:100:14:1, at a rate of 5 x 10~4 pummin—!. At 35-65 K
the gas frozen on the ice sublimates. The internally trapped gases are released at

135-160 K during the transformation of the amorphous ice into a high viscosity
“liquid™ with cubic domains.

Amorphous ice
Owen et al. (1999),
Bar-Nun et al. (2007)
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Gas opening and consequence for the accretion of
pebbles/planetesimals
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Gap formation halts the accretion of
pebbles -> Giant planets supersolar
metallicities cannot be acquired
during the growth of the envelope!!

Crédit. F. Masset

(Lambrechts & Johansen 2014)



Delivery of Volatiles to the Giant Planets — Vapors

Production of amorphous ice via
photoevaporation (Monga & Desch 2015)
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Release of volatiles from the ACTZ: the water
abundance in Jupiter?
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Influence of Jupiter’s formation location on the oxygen content in its envelope, assuming that H20 is the main O—bearing
volatile in the PSN. Here, Jupiter’s feeding zone contains water in both solid and vapor forms while the other volatiles
remain exclusively in vapor phase once released from the amorphous particles crossing the ACTZ. Two extreme cases can
be envisaged for the oxygen abundance in Jupiter’s envelope:

(1) Jupiter’s formation around the ice line where the O abundance is supersolar,
(2) Formation around the ACTZ where Jupiter’s O abundance is smaller, and eventually subsolar

Mousis, Ronnet & Lunine (2019)



Planetary to solar elemental
abundance ratio

Different scenarios of volatile enrichments in giant
planets
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Where does the bulk composition lie?
The cases of Uranus and Neptune
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Heritage and Previous Studies

The Galileo Probe
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