In Situ Exploration of the Giant Planets: a Horizon 2061 Perspective

Olivier Mousis¹, and David H. Atkinson²

¹Aix-Marseille Université, Laboratoire d'Astrophysique de Marseille, France Institut Universitaire de France ¹Jet Propulsion Laboratory, California Institute of Technology, USA

Planetary Exploration 2061

Thursday September 12, 2019

Motivation and Background

- Giant planets have played a significant role in shaping the architecture of our planetary system and the evolution of the smaller, inner worlds.
- The efficiency of remote sensing observations has some limitations, especially to study the bulk atmospheric composition.
- Example of these restrictions: exploration of Jupiter, where key measurements such as the determination of the noble gases and helium abundances have only been made in situ by the Galileo probe.
- The Galileo probe provided a giant step forward regarding our understanding of Jupiter. However, it is not known whether these measurements are representative of the whole set of giant planets of the solar system.

What is needed?

- Bulk composition: heavy element (> ⁴He), abundances (O, C, N, S, Ne, Ar, Kr, Xe)
- Isotopic ratios: noble gas isotopes, D/H, ¹³C/¹²C, ¹⁵N/¹⁴N
- He/H₂ ratio: for planetary heat balance and interior processes

What is known

Atreya et al. (2018), Mousis et al. (2018)

What did we learn from JUNO?

Thermochemical equilibrium models predict the base of ammonia cloud in Jupiter at ~0.7 bar. However Juno MWR data show a highly complex distribution of ammonia over Jupiter: the well-mixed ammonia is reached at atmospheric pressures exceeding 100 bars!!

In the case of the icy giants, well-mixed water may be found only at several kilobars to tens of kilobars pressure levels (Atreya et al. 2018).

Isotopic ratios measured in Jupiter, Saturn, Uranus, and Neptune

Isotopic ratio	Jupiter	Saturn	Uranus	Neptune
D/H (in H ₂) ⁽¹⁾	(2.60 ± 0.7) x 10 ⁻⁵	$1.70^{+0.75}_{-0.45} \times 10^{-5}$	(4.4 ± 0.4) x 10 ⁻⁵	(4.1 ± 0.4) x 10 ⁻⁵
³ He/ ⁴ He ⁽²⁾	(1.66 ± 0.05) x 10 ⁻⁴			
¹² C/ ¹³ C (in CH ₄) ⁽³⁾	92.6 ^{+4.5} -4.1	91.8 ^{+8.4} -7.8		
¹⁴ N/ ¹⁵ N (in NH ₃) ⁽⁴⁾	434.8_{-50}^{+65}	> 357		
²⁰ Ne/ ²² Ne ⁽⁵⁾	13 ± 2			
³⁶ Ar/ ³⁸ Ar ⁽⁶⁾	5.6 ± 0.25			
¹³⁶ Xe/total Xe ⁽⁷⁾	0.076 ± 0.009			
¹³⁴ Xe/total Xe ⁽⁸⁾	0.091 ± 0.007			
¹³² Xe/total Xe ⁽⁹⁾	0.290 ± 0.020			
¹³¹ Xe/total Xe ⁽¹⁰⁾	0.203 ± 0.018			
¹³⁰ Xe/total Xe ⁽¹¹⁾	0.038 ± 0.005			
¹²⁹ Xe/total Xe ⁽¹²⁾	0.285 ± 0.021			
¹²⁸ Xe/total Xe ⁽¹³⁾	0.018 ± 0.002			

(1) Mahaffy et al. (1998) for Jupiter, Lellouch et al. (2001) for Saturn, Feuchtgruber et al. (2013) for Uranus and Neptune. (2) Mahaffy et al. (1998) for Jupiter. (3) Niemann et al. (1998) for Jupiter, Fletcher et al. (2009a) for Saturn. (4) Wong et al. (2004) for Jupiter, Fletcher et al. (2014b) for Saturn. (5-13) Mahaffy et al. (2000) for Jupiter.

Delivery of Volatiles to the Giant Planets – Solids

Fig. 1. A plot of the fluxes of evolved CO, N₂, Ar and water during warming up of 0.1 μ m ice layer. The gas-laden ice was deposited at 27 K from a H₂O:CO:N₂:Ar = 100:100:14:1, at a rate of 5 × 10⁻⁴ μ m min⁻¹. At 35–65 K the gas frozen on the ice sublimates. The internally trapped gases are released at 135–160 K during the transformation of the amorphous ice into a high viscosity "liquid" with cubic domains.

Amorphous ice Owen et al. (1999), Bar-Nun et al. (2007)

Clathrates + pure condensates Gautier et al. (2001), Mousis et al. (2009, 2012)

Gas opening and consequence for the accretion of pebbles/planetesimals

Crédit. F. Masset

(Lambrechts & Johansen 2014)

Delivery of Volatiles to the Giant Planets – Vapors

Production of **amorphous ice** via photoevaporation (Monga & Desch 2015)

Release of volatiles from the ACTZ: the water abundance in Jupiter?

Influence of Jupiter's formation location on the oxygen content in its envelope, assuming that H2O is the main O-bearing volatile in the PSN. Here, Jupiter's feeding zone contains water in both solid and vapor forms while the other volatiles remain exclusively in vapor phase once released from the amorphous particles crossing the ACTZ. Two extreme cases can be envisaged for the oxygen abundance in Jupiter's envelope:

- (1) Jupiter's formation around the ice line where the O abundance is supersolar,
- (2) Formation around the ACTZ where Jupiter's O abundance is smaller, and eventually subsolar

Mousis, Ronnet & Lunine (2019)

Different scenarios of volatile enrichments in giant planets

Mousis, Atkinson et al. (2018)

Where does the bulk composition lie? The cases of Uranus and Neptune

Noble gases and their isotopes:

Anywhere below 1-bar level

CH₄, NH₃, H₂S, H₂O:

below the cloud. being much colder than Jupiter, the clouds of Uranus and Neptune lie much deeper

Atreya et al. (2018)

Heritage and Previous Studies

·9 .	;	.4			-1			r				di i		·			
		• ••			•				4								
			,				<i>c</i>	٩.	$^{2}\mu$	SIE	SAND	25				201	A
'N	A 5	S A	TE	C F	INI	c,	4 I.			1		•		NASA	TM	X-28	24
-7			M E	ΞM	OR	AN	1 D I	λW	1		J	->				÷	
824	•		ę.		۲		э.	٦	÷.	Ċ	ksa	S.				·	\hat{e}
<u>1</u> -2				•	ĸ				÷			÷				:	i
ų.	њ.,		÷	-			1		-ar	*	18	,	ſ	÷	*		
MASA		÷	~ġ				ē.	C	г.д	19	: E	9	74	199	-	. r	ç.
*	÷	ġ.	k				ø.,	4,23	4	С	0	P	Ý	*		÷	а л ,
- pe	φ_{τ}	1	÷	•1	P.	ŧ	84 84	1	niji Proje	*	40	÷.	٦.	*	: 9 ₇		di s
÷	s'	4:	'n	$\cdot \dot{c}$		ť	ŵ.	٩à	.ei i	×	di	19	4	÷ .	r		÷.
• -		. 5 i	. ف	۲		٠,	-1 ²²	4	4.	$(\frac{2}{4})$	- 1 . 17 -	-ti-	4		۴	r	· .
÷	ì	4.	•			e	÷	ч,	'n,	ų,	Ą.			4	-#		
- M	IIS:	SIO	N	PL	AN	[N]	INC	G I	OF	t-	jų.	ή	٠		1	•	
P	0	NE	ER	SA	\TI	JR	N/	UR	AN	JUS	5 × .	.4	į.		2	÷	,
١A	ŦŊ	10	SPI	IE	uC	P	RO	BE	М	ISS	Ю	NS				÷	٠
٩,		4	2									ş	i.			t.	÷.,
by av	By d 1	ron arr		Stven М.	son, mui	Ed ng	ward	i L.	Ti	ndle,							
4	mac	Rose	ard	. <i>Ca</i>	uter	-8			÷								
M	offe	tt Fr	ield,	Cal	if.	940	35										
				TIVE													ATA
NA	110414	LL AE	UNAL	int(\$	AND 5	PALE	A O MI	NISTR	A LEGN	• • •	(AS HIN	16 1 U M	, 0.0	. • 51	ritM	BEK 1	¥7.3
	al.	:			2	1	17		÷.			1		4		1	2

NASA 1973

ESA KRONOS proposal

ESA Huygens probe

ESA PEP study