The heliosphere: Lessons learned from Voyager, Cassini, IBEX about our home in the galaxy

Merav Opher Boston University, USA

Stars have bubbles around them: astrospheres

These Astrospheres Protect Life

Our Heliosphere is the only case we know of a habitable astrosphere –

The Heliosphere Shields 75% of Cosmic Rays (up to 1GeV) from Milky Way Galaxy

Voyager 1 in the north Voyager 2 in the south *In-situ data*

IBEX-Hi-0.9-1.5keV Differential Flux [ENA/(cm² s sr keV)]

Global maps of Energetic Neutral Atoms (IBEX, Cassini)

A Sheath Dominated Thermodynamically by Pickup Ions

- Shock is much colder than expected
- ~ 80% of the energy goes into supra-thermal particles

Discovery of a new paradigm:

Pickup ions carry most of the pressure

Richardson et al. Nature 2005

Puzzles in the Heliosheath

VERY different flows at Voyager 1 and 2

Concepts of the Heliosphere

Two limiting cases of the shape of the heliosphere; from Parker (1961)

Weak Interstellar Magnetic Field

Strong Interstellar Magnetic Field

Working Paradigm

Fig. 2. Geometrical pattern of the interface. Results of the numerical calculations for $n_{H_{\infty}} = 0$ (1) and $n_{H_{\infty}} = 0.14$ cm⁻³ (2); curves (3) are the sonic lines. Positions of bow shock (BS), termination shock (TS), heliopause (HP), reflected shock (RS), tangential discontinuity (TD), and Mach disc (MD) are shown.

Baranov & Malama (1993) – Hydrodynamic calculations

INCA ENA spectra / Nose and Anti-nose symmetry between 2003-2009 (from Dialynas et al. 2017)

12

"Tailless Heliosphere" (Dialynas et al. 2017)

LETTERS May 5 issue, 2017

NATURE ASTRONOMY

McComas et al. 2013

Models don't agree on the shape

Izmdenov et al. 2015

Opher et al. 2015; 2019

Pogorelov et al. 2015

Previous assumption is that the solar magnetic field has a negligible role

Probably because in the heliosheath, the plasma β =PT/PB >> 1

$$B = B_0 \left(\frac{R_0}{r}\right)^2 e_r - B_0 \left(\frac{R_0^2}{r}\right) \frac{\Omega \sin \Theta}{v_{\rm SW}} e_{\phi},$$

Ω: stellar rotation rateΘ: polar angle

Interplanetary Magnetic Field

Solar Magnetic Field is the backbone of the heliosphere

The Solar Magnetic field is not *passive* but instead (tension force) collimates the heliosheath flow in two jets (Opher et al. 2015; Drake et al. 2015)

Solar Wind Confinement

The solar magnetic field lines (gray) are shown in panels (a) and (b) in two different models. (c) Solar wind mass flux (rhp v) projected on a closed surface located in the inner heliosheath at equal distances from the heliopause – model (A) has no solar magnetic field and model B has solar magnetic field. White curves are the projections of the solar magnetic field.

Pickup lons

Solar Wind

Multi-Ion MHD

A Predicted Smaller Rounder Heliosphere

The round heliosphere has distances from the Sun to the heliopause similar in all directions

The medium ahead of the Heliosphere in the ISM is disturbed by the Heliosphere

Curtesy of D. Gurnett

Spectrum of Turbulence in the Local Interstellar Medium

Driven at smaller scales than thought – 2000AU; at least at these distances close to the Heliopause

Solar Like Magnetic Field Ahead of the Heliosphere

23

